Discovering Molecular 'Team-work' Underlying Nitrate Assimilation in A Unicellular Red Alga
Published:15 Mar.2022    Source:Tokyo Institute of Technology

Nitrogen is an essential component for plant growth and development. Plants generally take up nitrogen from their environment in the form of nitrates or ammonium and assimilate them into amino acids with the help of the products of nitrate or ammonium assimilation genes, respectively. Transcription factors (TFs) regulate this activity, while also modifying the rate of nitrate assimilation depending on the changes in nitrogen levels. In nitrogen deficient condition, these TFs positively regulate the expression of nitrate assimilation genes.

 
The same holds true for Cyanidioschyzon merolae, a unicellular red alga, which serves as an excellent model of photosynthetic higher organisms to study transcription. While it is known that the TF called 'CmMYB1' is responsible for transcribing nitrate assimilation genes in nitrogen-depleted condition, the mechanism for this under nitrogen-repleted(+N) condition is not clear.