Table 6 Therapeutic activities of white tea

Bioactivities	Effects	Reference
Diabetes	The antidiabetic potential of WTE in α -amylase inhibitory assay	Kalauni and Sharma, 2018
	showed that the IC50 value of methanolic extract of white tea was	
	68.73 μg /mL whereas that of a standard drug was 39.07 $\mu g/mL$	
	A regular consumption of WTE for two months improved the	Silveir et al., 2021
	oxidative status of lung tissues of rats with prediabetes	
	White tea significantly improved the structural changes of the kidneys	Xia et al., 2021
	in mice with T2DM mellitus and markedly ameliorated the glucose	
	intolerance when used in combination with Jiaogulan tea	
	WTE extracted by citric acid increased α -glucosidase inhibition	Shiyan et al., 2020
	The inhibitory effects of α -Amylase and α -Glucosidase by WTE	Xu et al., 2019
	decreased with the prolongation of storage time from 1 to 3 years	
	Crude polysaccharides from white tea showed the inhibitory activity	Guo et al., 2021
	of α-glucosidase	
	WTE effectively ameliorated hyperglycemia and hyperlipidemia in	Amanzadeh et al., 2020
	Streptozotocin-induced diabetic rats	
Cardiovascular disease	1.6% WTE supplemented in a diet high in fats and sugars for 20	de la Fuente Muñoz et al.
	weeks prevented the development of metabolic syndrome-associated	2022
	hypertension in rats	
	WTE was efficient in stimulating the uptake of low-density	Luo et al., 2020
	lipoprotein-cholesterol LDL-c in hepatic cells	
Dbesity	White tea was the most effective tea type in reducing the body weight	Liu et al., 2019
	and fat accumulation in high fat diet induced obese mice	
	WTE significantly inhibited weight gain of obese mice receiving high	Mao et al., 2021
	fat diet by reducing their food and energy intake	
Fatty liver disease	Daily feed of 1000 mg/kg and 500 mg/kg body weight WTE	Li et al., 2022
	alleviated hepatic steatosis and liver injury in a mouse model of	
	non-alcoholic fatty liver disease	
Plague	Mouth rinses of steeped 2.5% white tea twice daily for four days was	Damhuji et al., 2022
	effective in reducing Streptococcus mutans and plaque accumulation	
	on teeth	
	0.1 mg/mL white tea mouth rinse was found to be a potent antiplaque	Nagar et al., 2018
	agent when used twice daily for ten days	
	Ethanol- and water- based WTEs were effective against two	Kusumawardani et al., 2019
	cariogenic oral bacteria Streptococcus mutans and Streptococcus	
	sobrinus	1 1 2010
	Enamel samples were hardened significantly after being immersed in	Auerkari et al., 2018
	a solution containing both white tea and xylitol	
	White tea mouthwash significantly inhibited the growth of	Jeevanandan, 2019
	Streptococcus mutans and Lactobacillus acidophilus, the effect of	
	which was more evident when the concentration increased from 20 μL	
	to 40 μL	
	White tea was useful for inhibiting the growth of pathogens involved	Auerkari and Suhartono, 2018
	in the development of caries and/or periodontal diseases	
Intoxication	WTE exerted significant protection against neurotoxicity mediated by	Li et al., 2019
	tert-butyl hydroperoxide and hydrogen peroxide in cells	
	Compared with black, red, and green teas, white tea exerted the	Tomaszewska et al., 2018
	strongest protective effect on bone tissue and hyaline cartilage against	
	co-exposure of heavy metals, Cd and Pb, to rats	

Continued Table 6

Bioactivities	Effects Reference
Intoxication	White tea enhanced the liver histology, immunohistochemistry and Hamdy et al., 2022
	biochemistry against acrylamide induced toxicity in rats
	1% WTE effectively reduced the activities of biomarkers under Rangi et al., 2018, Dhatwalia
	conditions of inflammatory, oxidative and liver stress in rats with et al., 2019
	benzo(a) pyreneinduced hepatotoxicity and lung toxicity
	Polyphenol extract from white tea effectively lowered biochemical Cao et al., 2020
	parameters of liver function and hepatocyte damage in mice with CCl4
	induced liver injury
	White tea exhibited antioxidant and hepatoprotective activities in mice Yi et al., 2020
	with acute alcohol-induced liver injury
Alzheimer's disease	White tea exerted significant protection against A β hallmark Li et al., 2019
	(Alzheimer's protein) evoked neurotoxicity by modifying Aß amyloid
	into an amorphous and punctate aggregate morphology
	White tea infusions effectively inhibited the activity of Baranowska-Wójcik et al.,
	acetylcholinesterase, the administration of which inhibitors is the most 2020
	common treatment of Alzheimer's disease
Aging	White tea was effective in reducing wrinkles by lowering dermal Sonawane et al., 2021
	extracellular matrix degradation, inflammation, and skin barrier
	damage
	In vivo sun protection factor (SPF) testing of white tea cream product Campa and Baron, 2018
	revealed an average SPF of 1
	Silver needle white tea was proved to be effective in preventing Chong et al., 2021
	D-galactose/lipopolysaccharide-induced aging in mice through
	antioxidative and anti-inflammatory mechanisms
	WTE had a significant inhibitory effect on the formation of amyloid Wan et al., 2021
Memory deficits	mediated by aging and high-fat diet Ischemia impaired spatial learning in rats was avoided by white tea Martins et al., 2017
	supplementation 10 days before ischemia stroke or sham surgeries
Cancer	WTE inhibited proliferation of cancer cells via induction of apoptosis Liu et al., 2018
Cancer	w 12 minored promeration of cancer cens via induction of apoptosis – Liu et al., 2018
	The viability of the cancer cells decreased with increasing white tea Haghparasti and Mahdavi
	concentrations Shahri, 2018